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Abstract. When capturing images underwater, image formation is af-
fected in two major ways. First, the light rays traveling underwater are
absorbed and scattered depending on their wavelength, creating effects
on the image colors. Secondly, the glass interface between air and water
refracts the ray entering the camera housing because of a different index
of refraction of water, hence the ray is also affected in a geometrical way.
This paper examines different camera models and their capabilities to
deal with geometrical effects caused by refraction. Using imprecise cam-
era models leads to systematic errors when computing 3D reconstruc-
tions or otherwise exploiting geometrical properties of images. In the
literature, many authors have published work on underwater imaging by
using the perspective pinhole camera model (single viewpoint model -
SVP) with a different effective focal length and distortion to compen-
sate for the error induced by refraction at the camera housing. On the
other hand, methods were proposed, where refraction is modeled explic-
itly or where generic, non-single-view-point camera models are used. In
addition to discussing all three model categories, an accuracy analysis
of using the perspective model on underwater images is given and shows
that the perspective model leads to systematic errors that compromise
measurement accuracy.

1 Introduction

Underwater imaging is becoming more and more popular as technology becomes
available to research the ocean floor at great water depths. Exemplary applica-
tions are the measurement of fish sizes or other organisms - in general observa-
tions of different ecosystems, (volumetric) measurements of deep sea structures
like hydrothermal vents, offshore oil production, construction and maintenance
of offshore wind parks, cable and pipe inspection, underwater archeology (e.g.
ship wreck inspection, cave diving), and ship hull inspection as a measure against
terrorism.
? This work was supported by the German Research Foundation (DFG), KO-2044/6-1

3D Modeling of Seafloor Structures from ROV-based Video Sequences



2 Anne Sedlazeck, Reinhard Koch

Fig. 1. Fermat’s principle based on the ray from S to P being refracted at O.

In contrast to conventional computer vision, underwater image formation is
effected in two ways. First, while traveling through the water, the light rays are
partly absorbed and scattered, dependent on the wavelength. This leads to a
green or blue hue on underwater images and has thus an effect on the colors.
Secondly, refraction of light occurs at the boundary to the underwater housing,
since the inside is usually occupied by air. Refraction effects the geometry of the
image formation and is the subject of this work.

1.1 Refraction at Underwater Housings

The definition of refraction, as in [20], is the deviation of a light ray from its
former path when entering a medium with a new optical density. While the
frequency is constant, this causes the propagation velocity to change and all
rays, not traveling perpendicularly to the interface, change their direction and
enter the new medium under a different angle compared to the interface’s normal.
This effect is explained by Fermat’s principle: the light traveling through two
different media always travels the way that takes the least time to traverse. A
derivation using the distances traveled and the speed of light in the different
media yields Snell’s law.

Following figure 1, the time the ray needs to travel from S to P is described
by the following sum:

t =

√
(Z − d)2 +R2

1,2

ν1
+

√
d2 + (R2 −R1,2)2

ν2
, (1)

where ν1 and ν2 denote the speed of light in the corresponding medium. In
order to minimize this equation, its derivative is computed:

∂t

∂R1,2
=

R1,2

ν1

√
(Z − d)2 +R2

1,2

+
−(R2 −R1,2)

ν2
√
d2 + (R2 −R1,2)2

= 0, (2)

which can also be expressed by:

sin θ1
ν1

=
sin θ2
ν2

, (3)
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Medium Index of Refraction

air (λ = 589nm) 1.0003

pure water (λ = 700nm, 30◦C, p = 1.01e105Pa) 1.329

pure water (λ = 700nm, 30◦C, p = 1.08e108Pa) 1.343

sea water (λ = 700nm, 30◦C, p = 1.01e105Pa) 1.335

sea water (λ = 400nm, 30◦C, p = 1.08e108Pa) 1.363

quartz glass (λ = 589nm) 1.4584

acrylic glass (Plexiglas, λ = 589nm) 1.51

crown glass (λ = 589nm) 1.52

light flint glass (λ = 589nm) 1.58

dense flint glass (λ = 589nm) 1.66

Lanthan flint glass (λ = 589nm) 1.80

Table 1. Indexes of refraction for air, different kinds of water, and glass as in [20] p.
163 and [36] p. 85.

and with c being the speed of light in vacuum and n1 = c/ν1 and n2 = c/ν2,
Snell’s law follows:

sin θ1
sin θ2

=
n2
n1
. (4)

n1 and n2 are called indexes of refraction describing the phenomenon for
both media. When setting the index of refraction to 1.0 for vacuum, all other
indexes are determined relative to it. Important for this work are the indexes
of refraction for water, glass, and air. The index of air is close to the index of
vacuum, and is therefore usually set to 1.0. The index of water changes due to
wavelength, salinity, pressure, and temperature, causing slight changes of the
index of refraction when comparing different water bodies in the ocean (see
table 1). According to [36], the dependency on all four parameters only induces
a change of about 3% in the index of refraction in the whole relevant parameter
range for ocean optics, thus the change can be ignored. In contrast to that, [20]
lists the indexes of refraction for glass (see table 1) and shows a far stronger
variation depending on the different materials, usually requiring them to be
considered explicitly.

When using cameras to capture underwater images, those cameras need to
be put into watertight underwater housings. These underwater housings have a
piece of glass through which the image is taken, while the inside of the housing is
filled with air. Hence, refraction, as described above, happens twice: first, at the
water-glass interface and, secondly, at the glass-air interface (fig. 2, left), causing
the ray to shift due to the double refraction depending on the glass thickness.

When working with camera housings, two different kinds of glass ports need
to be considered. Planar glass, effecting most of the rays to be refracted just as
depicted in figure 2 on the left, and dome ports (fig. 2, right), eliminating the
refractive effect to some extend. In theory, the dome port completely removes
refraction, due to zero angles between the interface normal and incoming rays.
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Fig. 2. Left: refraction at flat glass interface. Right: straight rays entering the under-
water housing through a dome port.

However, the port and housing need to be manufactured and assembled such that
the camera is centered perfectly with respect to the dome port’s center for this
to work. In case of a flat port or an imperfectly fit dome port, refraction of light
rays invalidates the single-view-point camera model. This can be observed in
figure 2 on the left for a flat port: the rays traveling in the water in the camera’s
direction are traced towards the optical center without refraction (dashed lines)
and they do not intersect the optical axis in one common center of projection.
Hence, the camera does not have a single view point (non-SVP camera model)
and the commonly used pinhole camera model is invalid for underwater images.

In the literature, a large group of authors uses the perspective model, al-
though their camera housings have flat ports, while others seek a complete phys-
ical model of the refraction effects to achieve greater accuracy. A third approach
consists of using a more generic camera model, not requiring a single view point,
only being based on rays. The goal of this work is to examine the wealth of ap-
proaches to underwater imaging and to discuss their benefits and shortcomings.
We will show that the SVP assumption is not sufficient and will discuss a camera
model that eliminates these shortcomings.

Sections 2 - 4 will analyze in depth the state of the art in underwater camera
models and will give an overview of the publications on the above mentioned
categories. A concise summary of all papers and their application area is given
in tables 5-7 in an overview covering perspective models (28 papers), ray-based
models (6 papers), and physical, refractive models (19 papers). In section 5, an
error analysis of the usage of the perspective and the physical imaging model on
underwater images is presented, followed by a conclusion.

2 The Perspective Camera Model

Throughout the article, geometric entities are described in a common notation,
summarized in table 2. In addition, the conversion of Euclidean coordinates into
cylinder coordinates is required:R

ϕ
Z

 =

√X2 + Y 2

arccos(XR )
Z

 . (5)
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Homogeneous Point in 3D X = (X,Y, Z, 1)T

Homogeneous Point in 2D x = (x, y, 1)T

Euclidean Vector in 3D X = (X,Y, Z)T

Euclidean Vector in 2D x = (x, y)T

Ray in 3D X̃ = (X̃, Ỹ , Z̃)T

3D vector in cylinder coordinates Xc = (R,ϕ, Z)T

Ray in cylinder coordinates X̃c = (R̃, ϕ̃, Z̃)T

distance camera center - interface in mm d

glass thickness in mm dg
indexes of refraction (air, glass, water) na, ng, nw

Table 2. Notations for rays and points in Euclidean, homogeneous, and cylinder coor-
dinates. Note that in some cases, it is sufficient to use the radial coordinates (R,Z)T ,
thus ϕ is omitted for the sake of readability.

The pinhole camera model with distortion is one of the established models
for perspective cameras. It uses rays to describe how 3D points are projected
to individual pixels and is parametrized by intrinsic parameters describing the
camera’s internal properties:

K =

f s cx
0 af cy
0 0 1

 (6)

with f being the focal length, a being the aspect ratio, s being the skew, and
(cx, cy) being the principal point. Extrinsic parameters describe the camera pose,
thus, the projection matrix follows with R being an orthonormal rotation matrix
and C being a translation vector: P = KRT [I| − C]. A homogeneous point X
in 3D space is projected by the camera, resulting in a homogeneous 2D point
x = PX. In addition, it is possible to use this parametrization to back project
2D image points, i.e. to compute the ray in space on which the 3D point lies
[18]. Imperfect lenses require an additional compensation for lens distortion [35],
which is usually divided into a radial component and a de-centering or tangential
component, approximated by a polynomial. Let (x, y) be a 2D image point with-

out distortion. With r =
√
x2 + y2, the distorted point (xd, yd) is then retrieved

by: (
xd
yd

)
=

(
x+ (x− cx)[r1r

2 + r2r
4 + ...] + xtan

y + (y − cy)[r1r
2 + r2r

4 + ...] + ytan

)
(7)

xtan =[t1(r2 + 2(x− cx)2) + 2t2(x− cx)(y − cy)](1 + t3r
2 + ...)

ytan =[2t1(x− cx)(y − cy) + t2(r2 + 2(y − cy)2)](1 + t3r
2 + ...)

where r1, r2, ... and t1, t2, ... are the radial and tangential distortion coefficients
respectively. In the literature, there is no consensus about the number of coef-
ficients that are necessary for perspective cameras with distortion. For example
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Fig. 3. Approximation of the underwater camera by the perspective model. A virtual
image plane is used in combination with larger radial distortion to image the point
onto the same radial coordinate. Even though, the two 3D points lying on the same
ray in water are projected to the same pixel using the underwater model, but onto
different pixels using the perspective model.

[21] uses two parameters each, while [61] uses only one coefficient for radial dis-
tortion and none for tangential distortion. Two coefficients for radial distortion
and none for tangential distortion are used by Zhang in [66]. A description of a
widely used toolbox for perspective camera calibration is found in [2]. For our
own experiments we use [52] with two coefficients for both components.

When using the perspective model on underwater images captured through
a glass port, a calibration based on above-water images is invalid underwater.
Furthermore, the perspective model itself is invalid for underwater images due
to the non-single view point. Despite that, focal length and distortion coeffi-
cients can be used to approximate the difference introduced by not modeling
refraction explicitly. Figure 3 depicts this approximation using cylinder coordi-
nates: (R1

w, Z
1
w) is a 3D point in water, which would be imaged to r1uncompensated

without any compensation causing a large error compared to the true image r.
By using a virtual image plane, which is moved further away from the center
of projection, a part of this error can be compensated (r1persp). Stronger radial
distortion r1comp can be used to eliminate the error (r = r1persp + r1comp). The
second 3D point (R2

w, Z
2
w) is imaged with a greater point-camera distance on

the same ray in water and it immediately becomes obvious, that the required
compensation by radial distortion r2comp differs from r1comp and is therefore de-
pending on the camera-point distance, a feature not supported by the common
pinhole camera model. Hence, the approximation can only be satisfying for the
calibration distance.

In spite of these problems, such an approximation offers the possibility of cal-
ibrating a camera above water and compute its approximate calibration for the
underwater scenario, which is examined in the following two presented methods.
Freyer et al. [12] use the pinhole camera model (with 3 parameters for radial
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distortion and 2 for tangential distortion) and compensate for refraction by mul-
tiplying the focal length in water by 1.34. More important in their opinion, is the
change in the distortion parameters. When submerging a camera in water, the

change in radial distortion is specified to be δr =
(

cos θw
cos θa

− 1
)
r, with r being the

radial distortion in air, θw being the angle between optical axis and water ray,
and θa being the angle between optical axis and air ray. In common applications
for perspective cameras, those angles are usually unknown.

Lavest et al. published a similar work in [30]. The paper explicitly models a
thick lens, directly emerged in a medium other than air, which is then transferred
into the pinhole model with distortion. Concerning the focal lengths in air and
water, the major result matches the one introduced above:

1.333fwater = fair. (8)

The computation of underwater distortion differs to the one in [12]: if rdair and
rdwater are the distorted coordinates in air and water respectively and rradair
and rradwater the corresponding radial distortion corrections, then

1.333(rdair − rradwater ) = rdwater − rradwater . (9)

The authors experimented with two different cameras and their calibrations in
air and water and found the theoretical equations (8) and (9) to be a good
approximation. When considering the above discussion of figure 3, it becomes
clear that unless rradwater is depending on the imaging distance, the model error
is still not eliminated completely.

In case of using a dome port with a perfect fit, meaning the sphere’s center
coincides with the camera’s center of projection, a calibration done in air is valid
below water. According to the entry pupil model used for lens systems [1], the
locus of the center of projection is determined by the lens system of the camera
and can even lie in front of the physical camera and its lens. Consequently, it is
a difficult task to perfectly align the camera center and the dome port’s center.
Alignment errors lead to even more complicated aberrations from the pinhole
model than in the flat port case.

Despite of this usually inevitable geometric error, the literature contains a lot
of methods (refer to tables 5-7), where the perspective model is used in underwa-
ter scenarios. Examples for calibrating a camera underwater are found in [4] or
by Pessel et al. in [45, 43, 44]. Application areas utilize the implicitly contained
geometric properties of the images to measure distances in stereo images [19, 8],
to compute dense stereo [51, 39], to aid navigation by computing mosaics [15,
16, 13, 5, 63, 9, 60, 42], or to reconstruct 3D structure (called Structure from Mo-
tion or SFM) [23, 22, 24, 3, 53, 46, 47, 25, 40, 41]. The nature of these applications
requires accurate geometric estimation. Especially the SfM approaches utilize
navigation data, often available on a ROV (Remotely Operated Vehicle for un-
derwater operations) in order to gain more accurately estimated camera poses
and/or rely on extensive global optimization (bundle adjustment, refer to [59]).
Otherwise, drift, i.e. an accumulating error in the recovery of the camera path,
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Fig. 4. Radial image of a caustic (marked in red) caused by refraction at a water-
air interface. When tracing the rays in water (dashed lines), they are tangents to the
caustic.

is a major problem sometimes causing the results to be useless. Some of the au-
thors even mention the erroneous camera model as one of the error sources, but
even though, up until now, most Structure from Motion approaches neglect the
error caused by refraction. Only recently, research has begun to explicitly incor-
porate refraction in a specialized SfM-system [6]. Section 5.3 will try to answer
the question as to how severe the introduced error is for the applications.

3 Ray-Based Generic Camera Models

A possibility to account for refraction in underwater imaging more explicitly is
to use a more generic camera model in underwater scenarios. Such ray-based
cameras do not need to have a single viewpoint and are capable of dealing with
dome ports and flat ports alike.

Grossberg et al. [17] introduce a generic camera model, where incoming rays
are ’somehow’ captured by corresponding pixels on the sensor. It is assumed that
each pixel records exactly one main ray, no matter where on the ray the sensor
array is. Therefore, the central definition of the paper, the raxel, describes one
ray per pixel. When parameterizing all rays of an imaging system, there is usually
a singularity in the bundle of rays (not true for e.g. orthographic cameras). The
locus of this singularity is the caustic (fig. 4), uniquely describing the imaging
system. In case of a single view point system, the caustic encompasses only a
single point - the center of projection.

In order to compute the caustic, the mapping from image coordinates to rays
is differentiated.

X(x, y, α) =

X(x, y, α)
Y (x, y, α)
Z(x, y, α)

 = Xs(x, y) + αX̃(x, y), (10)

with Xs being the starting point and X̃ being the direction of the ray starting at
image point (x, y) and α ∈ R describing the position on the ray. The determinant
of the Jacobi matrix of this parametrization is set to zero and solved for the
parameter α.

det(J(X(x, y, α))) = 0 (11)
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Using α in (10) allows to compute the corresponding point on the caustic for
each pixel position (x, y). Grossberg et al. develop a method to compute caus-
tics for arbitrary cameras numerically by projecting differing calibration pat-
terns using an active display. Unfortunately such active displays are not feasible
in underwater environments, but as was noted by [58] (see also below), caus-
tics provide a natural connection between the underwater non-single-view-point
camera, generic ray-based cameras, and the common pinhole model.

A different work by Narasimhan et al. [38] researches light sheet reconstruc-
tion as an application of the described raxel model for small scale underwater
images in laboratory settings. A camera is put in front of a water tank, and cal-
ibrated by placing two planes into the tank vertically with respect to the optical
axis and therefore gaining two points in space for each ray.

In addition to the raxel model, Sturm et al. [55, 54] work with another ray-
based model, where each pixel is simply represented by a ray defined by its
starting point and its direction of travel. By only assuming that neighboring
rays are close to each other, this model is independent of the physical location
of the sensor array and does not require an existing caustic, thus making the
camera model even more generic than the raxel model. A camera is calibrated
by taking several images of a calibration plane, however, the authors mention
problems with the calibration robustness. In [54], algorithms for pose estimation,
triangulation, multi-view geometry, in short for SfM, are derived and the theory
is applicable to the underwater case. [7] concentrates on the case of a refractive
plane in an underwater scenario. The derivation only works for one refractive
interface (thin glass) and has not yet been implemented.

Another possibility to deal with refraction by approximating ray-based cam-
eras is described in [62]. Here, the camera is viewed as a non-SVP camera having
a caustic instead of the single view point. Instead of modeling the refraction ef-
fect physically or using a generic ray-based camera, the camera is approximated
by several perspective cameras for the different areas of the image. The number
of virtual perspective cameras determines the accuracy of this system.

In summary, it can be said, that using a more generic camera model than
the pinhole model with distortion allows to deal with refractive effects. However,
using independent 3D origins and directions for each ray leads to a high degree
of freedom, making the robust calibration of generic camera models difficult,
especially in open water. The following section shows that far less parameters
need to be determined if refraction is modeled explicitly.

4 Physical Models for Refraction

The third possibility to deal with refraction is to use a physical model that
explicitly computes the refraction of rays at the underwater housing. Several
methods for achieving this will be compared in this section. They differ in the
assumptions made about the glass thickness, normal between interface and image
sensor plane, or indexes of refraction and in their derivation.
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The two papers presented next describe the theory and calibration method
for calibrating underwater cameras with the assumption of a thin piece of flat
glass as an interface of the underwater housing.

In [58] by Treibitz et al., the derivation of a refractive model and its cali-
bration for a perspective camera behind a flat port are presented. The authors’
underwater housing has a glass thickness of about 5mm. The ray’s shift due to
traveling through the glass interface is approximated to be about 0.28mm and
therefore neglected. In addition, it is assumed that the image sensor and the
interface are parallel. This allows examining the projection through a refractive
interface by using radial image coordinates, thus making it possible to derive all
required equations analytically.

The derivation is based on Fermat’s principle (see 1.1):

dt

dRi
= nw

−(Rw −Ri)√
(Zw − d)2 + (Rw −Ri)2

+ na
Ri√

d2 +R2
i

= 0, (12)

where, (Ri, d) is the radial coordinate on the interface and (Rw, Zw) is the
radial coordinate of the 3D point in the water. For common perspective systems
with only small amounts of radial distortion, the following equation holds for all
radial coordinates:

f ≈ Zwr

Rw
, (13)

with f being the focal length. This equation can be used to project (radial)
coordinates on the glass interface (Ri, d) into the perspective camera:

Ri = rd/f (14)

Using this in equation (12) yields:(
Rw −

d

f
r

)2
[(

fnw
r

)2

+ (n2w − 1)

]
= Z2

w (15)

relating r and (Rw, Zw) in the underwater case. In order to calibrate the camera
model, the common parameters for perspective cameras (f , (cx, cy), r1, r2) as
well as the interface distance d are calibrated. Based on (15), the following
equation needs to be satisfied:

Rw =
Zw√(

fnw
r

)2
+ (n2w − 1)

+
d

f
ri (16)

which is extended to account for lens distortion. When using two points Xw1

and Xw2 , they are parametrized by (Rwi , ϕwi , Zwi) and their distance in space
is estimated using the law of cosines:

ŝ =

√
R̂2
w1

+ R̂2
w2
− 2R̂w1

R̂w2
cos |ϕw1

− ϕw2
|. (17)
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Using the true distances s, a non-linear optimization is used to solve for the
camera parameters. Usually, the intrinsic parameters apart from focal length are
estimated beforehand, leaving only the interface distance and the focal length
to be calibrated.

As introduced by [17], caustics can be used as a measure of the deviation from
the single view point model. [58] derives the caustic analytically using equation
(16) (see section 3):

Rcaustic =

(
1− 1

n2w

)(
r

f

)3

d (18)

Zcaustic =− n

[
1 +

(
1− 1

n2w

)(
r

f

)2
]1.5

d (19)

Obviously, the caustic’s extent is directly depending on the interface distance d,
therefore, the extent of the caustic can be diminished by moving the entry pupil
as close to the glass interface as possible.

Telem et al. describe in [56, 57] a different approach to model refraction. As
in the approach described above, the authors use a model with thin glass and
parallelism between image sensor and interface in the first paper, but in their
photogrammetric model, the authors relate the measured 2D image coordinates
to image coordinates eligible for perspective projection. Note that the camera
center is not valid for these points, so the intersection with the ray coming from
the water and the optical axis is computed for each set of image coordinates as
well. The non-refracted rays do not meet in one common center of projection.
For each point (in radial coordinates) a value

∆d = d

(
nw
naf

√
f2 + r2

(
1− n2a

n2w

)
− 1

)
(20)

specifies the distance between the center of projection and the actual crossing of
the non-refracted ray with the optical axis. The measured image points (x, y, f)
are modified in the underwater case to fit the perspective projection depending
on ∆d, the water ray’s crossing with the optical axis:x′

y′

f ′

 =

 x df
y df

d+∆d

 . (21)

This allows to write the back projection to an underwater ray as:X
Y
Z

 = (C + ∆C) + λRT

x′

y′

f ′

 (22)

with ∆C = −∆dr3 being the deviation from the principle point and r3 being the
third row of the rotation matrix R. In a second paper [57], the authors extend
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their approach to incorporate glass interfaces that are not parallel to the image
sensor, causing ∆d to become more complicated. However, in our tests, we found
that the ray coming from the water not necessarily intersects the optical axis if
the interface is not parallel to the image sensor. Errors introduced by a non-zero
glass thickness are absorbed by the interface distance. In the calibration tests,
the intrinsics are estimated first, then four additional parameters for the under-
water case are calibrated: d, n = nw/na, and two parameters for the interface
rotation. The results show that it is possible to estimate the required underwa-
ter parameters and the missing camera poses without getting large correlations
between the parameters.

An often cited method [28, 29] establishes a way to combine refraction with
the pose estimation using the Direct Linear Transform (DLT [18]). However,
parallelism between interface and image sensor was be achieved by manually
rotating the hardware, and the distance between interface and camera center is
measured. The authors have so far not included an estimation of those parame-
ters into their algorithm.

Up until now, all described methods considering a physical refraction model
assumed thin glass and, except for one, parallelism between interface and im-
age sensor. Li et al. [32, 31] (see also [35]) describe an approach based on back
projecting image points, with a stereo rig where the complete physical model is
calibrated: the double refraction of rays at the air-glass and the glass-water inter-
faces is modeled explicitly. Here, the light is assumed to travel through p+1 dif-
ferent refractive media and thus is refracted p times. This is derived using Snell’s
law instead of Fermat’s principle: the points (Xi, Yi, Zi) and (Xi−1, Yi−1, Zi−1)
denote the points on the i-th and i-1-th interface surfaces. The path length of
the ray between those interfaces is:

ρ =
√

(Xi −Xi−1)2 + (Yi − Yi−1)2 + (Zi − Zi−1)2. (23)

In addition, it is assumed that the start and end points (X0, Y0, Z0) and
(Xp+1, Yp+1, Zp+1) are known as well as the functions of the refractive surfaces

Fi(Xi, Yi, Zi) = 0 with their existing derivation:
[
∂Fi
∂Xi

, ∂Fi∂Yi
, ∂Fi∂Zi

]T
. Using those

notations, Snell’s law is applied at each refractive point: ni sin θi = ni+1 sin θ′i
and the ray between the interfaces is determined by:

X̃i =
1

ρi

Xi −Xi−1
Yi − Yi−1
Zi − Zi−1

 . (24)

With ni being the normal at the interface point (computed using the derivatives
of function Fi), θi and θ′i are computed using the scalar product:

cos θi =nT X̃i cos θ′i =nT X̃i+1, (25)

allowing the computation of the following function using Snell’s law and the fact
that both rays and the normal form the same plane:

X̃i+1 =
ni
ni+1

X̃i −
(

ni
ni+1

cos θi − cos θ′i

)
ni. (26)
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Using (26), inner interface points are back projected, then refracted twice re-
sulting in outer interface points and rays in water eligible for triangulation using
the stereo rig. The calibration routine assumes known indexes of refraction and
estimates the intrinsics and rig extrinsics from images taken in air. Then the
underwater parameters are calibrated by taking images of a three-dimensional
calibration object underwater using linearized versions of the equations derived
above to find an initial solution. The accuracy evaluation in [32] showed that the
errors of reconstructed 3D points are between 6mm and 6cm for the optical axis
and 6mm and 1cm for the x- and y-axes. In [31], an additional reduced central
projection allows to project points from 3D through a refractive interface onto
the image plane with an iterative method that solves for the required unknowns
on the interfaces.

In [27], the usage of a perspective camera in an underwater scenario is exam-
ined as well as a flat port and dome port model. The back projection is derived
by computing rays in air, glass, and water using Snell’s law and quaternion ro-
tations (refer to section 5.1). Projections are computed numerically. In addition,
a calibration routine is proposed assuming intrinsics, indexes of refraction, and
glass thickness to be known. Nested loops of a Levenberg Marquardt routine
[48] are used to solve for the remaining interface parameters and the camera’s
poses with respect to a calibration pattern. Unfortunately, the authors did not
implement and examine their calibration routine, but conclude that considera-
tion of refraction is necessary when exploring the implicitly contained geometric
information from images due to the model error (see section 5). Chang and Chen
[6] made a promising start in developing an actual 3D-reconstruction algorithm
with explicit consideration of refraction. The cameras are assumed to view the
object of interest through the planar water surface. The vertical direction of the
camera is assumed to be known, so only the heading of the camera needs to be
computed.

Another approach to using physical models is found in the works of Maas, [33,
34] and a follow-up work by Putze [50, 49]. The goal of both methods is optical
fluid flow analysis in fairly small laboratory tanks, where the fluid has been
marked with a set of particles. In the model, the actual 3D points in space are
substituted by their corresponding virtual 3D points, fitting the perspective back
projection. The computation of these points is based on an iteration with known
interface parameters and indexes of refraction. In order to calibrate the system,
a calibration pattern below water at known distances is used and optimized by
a bundle adjustment routine. The method has been found to perform well if the
indexes of refraction, especially for the glass are known. A correlation analysis
shows high correlation between focal length and distance between camera center
and glass interface for all three calibrated cameras. The works of Maas also
contain an introduction to epipolar geometry [18] in case of refractive imaging,
where the epipolar lines are bent into curves. If the ray in water from one camera
is known, several points on this ray are projected into the second image defining
a linear approximation of the epipolar curve. This is for example used in [11]
examining surface reconstruction.
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In addition, there exist some more exotic applications also considering re-
fraction explicitly. In contrast to the approaches described above, where the
indexes of refraction are assumed to be known, here, they can be calibrated only
in very confined laboratory scenarios. See [37, 64, 65, 26, 10] for more detailed
information.

The methods for using a physical model of refraction on underwater images
show that calibrating such systems is possible only if extra assumptions about
interface-sensor parallelism, indexes of refraction, or glass thickness are made or
a stereo rig is used. Until now, methods utilizing geometric information contained
in images usually rely on the perspective camera model, but [27] already showed
that a considerable error is caused by using the wrong camera model, however,
we found that an inclination angle between housing interface and image sensor
is even worse than different interface - camera distances. Therefore, the analysis
in [27] will be extended in the following section.

5 Accuracy Analysis of the Perspective Model

In this section, the exact derivation of the physical underwater ray cast will be
explained. This ray cast is then used to compute synthetic data compliant with
the underwater model allowing to compute for example the caustic for the case
of non-parallel interface and sensor plane. As shown in section 2, most authors
still work using a perspective camera on underwater images and this section
aims at examining the resulting error and its compensation in detail by using
the synthetic data computed by physically modeling refraction.

5.1 Physical Underwater Projection

The derivation of the ray cast in the physical underwater model presented here
follows [27], but is more detailed and considers projection routines. Note that
other papers using Snell’s law for the derivation come to similar conclusions.

Flat Port Back Projection in case of a flat port in front of an underwater
housing, the distance to the port, the glass thickness, and the normal of the
glass within the camera coordinate system are important parameters. Here, the
inner interface plane is parametrized by Πi = (n1, n2, n3︸ ︷︷ ︸

nΠ

,−d) containing the

normal and the port’s distance to the camera origin. In addition, the outer
interface plane is parametrized by the same normal and the glass thickness dg:
Πo = (n1, n2, n3,−(d+dg)) (fig. 5). When back projecting an image point in the
underwater case, the goal is the computation of the point on the outer interface
plane and the direction of the ray within the water. First, the image point x
needs to be turned into a ray within the camera’s underwater housing:

X̃a = K−1x, (27)
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Fig. 5. When back projecting a point (solid line), the ray travels from the camera
through air until it intersects the inner interface plane (Xi, Yi, Zi, 1)T . After being
refracted, the ray travels through glass until intersecting the outer interface plane
(Xo, Yo, Zo, 1)T , is then refracted, and finally travels through water reaching the
3D point in water (Xw, Yw, Zw, 1)T . Projecting (Xw, Yw, Zw, 1)T without refraction
(dashed line) yields a different pixel in the image.

with the subscript a denoting the coordinates within the underwater housing, in
air, and K being the camera matrix containing the intrinsic parameters. The ray
is in the camera coordinate system, i.e. the center of projection is in the origin.

In order to find the intersection Xi between ray and interface the following
equation is used:

ΠT
i


λgX̃a

λgỸa
λgZ̃a

1

 = 0 ⇒λg =
d

nTΠ X̃a
⇒Xi =

0
0
0

+ λgX̃a. (28)

The intersection of the port’s inner plane and the ray, parametrized by λg,
is used to determine the point on the inner plane of the interface Xi. After that,
the ray’s direction within the glass is computed: the scalar product between
the plane’s normal nΠ and the ray in air yields the angle between normal and
incident ray before refraction, and is then refracted:

θa = arccos

(
nTΠ X̃a

‖nΠ‖‖X̃a‖

)
θg = arcsin(sin θa

na
ng

). (29)

The ray being incident upon the inner interface plane needs to be rotated/refracted.
This is described by a rotation around the normal resulting from the cross prod-
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uct of the plane normal and the incoming ray:

nrot =
nΠ × X̃a

‖nΠ‖‖X̃a‖ sin θa
. (30)

The rotation angle is θrot = θg−θa and the rotation around the axis nrot is best
described by a unit quaternion:

q =

(
sin( θrot2 )
‖nrot‖ nrot

cos
(
θrot
2

) )
. (31)

This quaternion is applied to the ray X̃a, yielding the refracted ray X̃g, which
describes the light’s traveling direction within the glass. Now, the point on the
outer interface needs to be computed:

λw =
(dg + d− nTΠXi)

nTΠ X̃g
⇒ Xo =Xi + λwX̃g. (32)

The ray within the glass is refracted again, using the indexes of refraction for
glass and water, the cross product, and the unit quaternion rotation. The result
is the ray in water X̃w. The 3D point can be computed, if the distance dist
between the camera center and the 3D point is known:

||Xo + αwX̃w|| = dist (33)

This equation can be solved for αw yielding the distance the ray needs to travel
from the interface point:

Xw = Xo + αwX̃w. (34)

Xw is still in the camera coordinate system, but using the transform of the camera
pose, the point can easily be transformed into the world coordinate system.

Dome Port Back Projection the dome is parametrized by its center with
respect to the camera’s center of projection and its inner and outer radius. In case
of perfect alignment of the dome center and the camera’s center of projection,
the project and back project functions are equal to the common pinhole camera
model. Otherwise, the refraction at the dome needs to be modeled explicitly, but
the only difference to the method described above is found in the intersection of
the rays in air or glass and the inner and outer interface respectively. To compute
the intersection point, the inner and outer dome spheres are parametrized by
using the quadric:

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (35)
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A transformation containing the sphere’s inner ri or outer ro radius and the
translation of the dome’s center (Xd, Yd, Zd)

T are applied to the quadric to get
the matrix describing the dome:

Hi =


ri 0 0 Xd

0 ri 0 Yd
0 0 ri Zd
0 0 0 1

 (36)

Di =(H−1)TQH−1.

A homogeneous point X lies on the quadric D if XTDX = 0. Using the
parametrization for the ray in air or in glass, the intersections of the rays with
the inner or outer dome surface can be determined. The normals at those in-
tersection points can be found by using the line from the center of the dome to
the intersection points. Once the normals, the intersection points, and the ray
directions in air and glass are known, the remaining derivation of the refraction
is exactly the same as in the flat port case.

Projection in contrast to [27], we analyze the projection of 3D points into the
camera in more detail, using an approach building upon [58]. The problem in
this case is caused by the unknown points on the inner and outer interface. In
order to derive a formula for the projection, Fermat’s principle is applied. The
total traveling time of the ray is the sum of three components: the time spent
in the underwater housing (in air), the time spent in the glass of the interface,
and the time spent in the water. The derived equation contains four unknowns,
the x- and y-coordinates on the inner and outer interface planes (Xi and Yi and
Xo and Yo respectively):

t(Xi, Yi, Xo, Yo) = (37)

nair

√
X2
i + Y 2

i + Z2
i +

nglass
√

(Xo −Xi)2 + (Yo − Yi)2 + (Zo − Zi)2+

nwater
√

(Xw −Xo)2 + (Yw − Yo)2 + (Zw − Zo)2.

Since the light always travels the distance in the least time, this equation’s
partial derivatives are used to minimize the traveling time with respect to the
unknowns:

∂t

∂Xi
=0

∂t

∂Yi
=0

∂t

∂Xo
=0

∂t

∂Yo
=0. (38)

The plane equations are utilized to eliminate the Z-components:

Zi =
d− n1Xi − n2Yi

n3
(39)

Zo =
d+ dg − n1Xo − n2Yo

n3
.
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focal length 1100 px

image size 1001 × 801 px

principal point middle of image

distortion r1 = 0, r2 = 0, t1 = 0, and t2 = 0

aspect ratio 1

skew 0

index of refraction water 1.333

index of refraction glass 1.5

index of refraction air 1

interface distance 20mm

glass thickness 30mm

interface tilt 1.5◦

Table 3. Parameters used for caustic computation.

The resulting system of equations with four equations and four unknowns is
solved numerically using e.g. Powell’s hybrid method 1 [48]. After that, the
points on the inner and outer interface planes are determined, however, only
the point on the inner interface plane is relevant for projecting it onto the image
plane with the usual perspective projection.

In our tests, we found that it is difficult to find the correct solution using
this method, especially in case of a negative camera-interface distance. This
occasionally happens, when the entry-pupil of the camera lies in front of the
physical camera housing (refer to [1, 58]). In case of thin or no glass, parallelism
between interface and image sensor and positive interface distance d, (38) is only
depending on the radial coordinate on the refractive plane. The derivative in this
direction becomes a polynomial of fourth degree [14, 58]. For this special case,
[14] proved that the correct/practical root is found in the interval [0, Rw]. In
experiments in our more general case, with possibly negative d and non-parallel
interface, this is no longer true. In order to deal with all possible cases, the
projection can also be solved numerically (as in [27]). This is accomplished by
an optimization, which is initialized using the common perspective projection.
After that, the Nelder-Mead-Simplex routine2 [48] is used to compute the correct
2D point.

5.2 Caustics as a Measure of Deviation from the SVP

Caustics present the bridge between physically modeled underwater cameras
and more generic camera models. The extent of a caustic is also a measure
of the deviation from the perspective single view point camera. [17, 62, 58] de-
scribe methods for deriving caustics analytically. In more generic models with
thick glass and no parallelism between the sensor and the interface, the analytic
derivation becomes infeasible.
1 e.g. in GSL library from www.gnu.org/software/gsl/
2 NLOPT toolbox from ab-initio.mit.edu/nlopt/
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Fig. 6. Left: the caustic for a flat port camera housing with imperfect sensor-interface
alignment. Right: caustic in the dome port case with imperfect alignment.

Alternatively, the outer interface points and directions of the ray in water
are computed using the back project function described above. The derivatives
for the Jacobi matrix are computed numerically. α (parameterizing the point
on each ray, which lies on the caustic) is expressed in terms of the entries of
the Jacobian. Once α is known, the ray parametrization is used to compute the
caustic point for each image point (x, y). Figure 6 shows an exemplary caustic
for the parameters in table 3,and figure 7 is an example for the extent in x- y-
and z-direction, which changes with focal length and distance between camera
center and interface, and can be in the order of centimeters.

Fig. 7. Left: caustic size depending on focal length for 30mm glass thickness and
interface tilt = 1.5◦. Right: caustic size depending on interface distance for 30mm
glass thickness and interface tilt = 1.5◦.
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focal length 800,1000 px

image size 600 × 800 px

principal point middle of image

distortion no distortion

aspect ratio 1

skew 0

index of refraction water 1.333

index of refraction glass 1.45

index of refraction air 1

interface distance 10 - 80 mm

glass thickness 5, 30, 60 mm

interface rotation 0◦ or 2 − 3◦

rig baseline (no rotation) 200 mm

distance range checkerboard images 1000-10000 mm

Table 4. Parameters used for synthetic tests.

5.3 Accuracy of the Perspective Model in Calibration,
Triangulation, and SfM

In this section, results of the accuracy analysis of using the perspective model
on underwater images from [58, 27] are extended, especially considering slight
rotations of the interface plane.

Error Compensation in Perspective Calibrations Using an implementa-
tion of the model described above, a thorough examination based on synthetic
data is possible. The synthetic images were rendered according to the underwa-
ter projection model for a stereo camera rig. In order to examine the influence
of different underwater housings, different sets of calibration images (50 for each
set) showing a checkerboard pattern were rendered with different parameters.
Using the exact checkerboard corners to eliminate effects from erroneous cor-
ner detection, the camera rigs were calibrated perspectively using [52]. Table 4
summarizes the parameters for different test cases.

When using the error-free 2D3D correspondences from perspective projec-
tions for calibration in [52], the final re-projection error is in the order of 10−8

(model and data fit perfectly). When using 2D3D correspondences compliant
with the underwater model, the final re-projection error is in the order of (∅ <
0.05 pixel), which still suggests a good fit to the perspective model. As stated
by [12, 30], the focal length changes according to the refractive index of water
when calibrating perspectively, see figure 8 on the left. The underwater images
were rendered without any distortion, so the four resulting parameters (fig. 8,
right) give an idea about how much the images are altered by refraction. Obvi-
ously, tangential distortion does not compensate the error induced by tilting the
interface. Figure 9 on the left shows the resulting errors in principal points of
the calibration. In the case of a slightly rotated interface plane, part of the error
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is absorbed by moving the principal point. Furthermore, the computed camera
centers have an increasing error and increasing covariances (see figure 9 on the
right), not only suggesting problems with robustness, but an error in the extrin-
sic parameters during the calibration causes errors during applications later on.

In case of dome ports, [27] came to the conclusion that perspective models
are accurate enough if the camera center does not move more than 1cm from
the dome center.

Triangulation Errors When using a perspectively calibrated underwater cam-
era for tasks such as measuring using stereo rigs or computing 3D reconstruc-
tions, accuracy and drift reduction play important roles. The error induced by
using the perspective model for triangulating points is shown in figure 10. The
left image shows a rendering of 3 cameras and 20 triangulated points. In dark
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distance (relative with respect to camera-point distance in %).

gray are the true points triangulated using the underwater model, while the light
gray points were triangulated using the perspective model. It can be seen clearly
that the perspective calibration has an area where it fits well, allowing fairly
accurate reconstruction, while in other areas of the 3D space high triangulation
errors occur. The right figure 10 shows triangulation errors depending on the
interface distance for the stereo rig calibrated in different parameter configura-
tions. In addition to the dependence on the interface distance, the error also
depends on the distance of the points used for triangulation to the center of
projection and the distance range of the calibration pattern with respect to the
camera. Figure 11 extends the analysis of plane triangulation in [27] by compar-
ing parallel and non-parallel interfaces: the black (red in color version) planes
are triangulated using the underwater model (interface distance 20mm, glass
thickness 30mm), while the gray (green in color version) planes are triangulated
using the perspective calibration. In case of parallelism between interface and
image sensor, the error is radially symmetric (11, left), while in the right image,
a slight rotation of the interface plane causes far higher errors.

Errors in Pose Estimation Figure 12 shows the reconstruction of a cylinder
captured from cameras moved on an orbit with slight interface rotation. The
error induced by the wrong camera model clearly accumulates. Note that the
correspondences used are synthetic and therefore not biased by feature detection
and matching methods, so all of the drift in this scenario is caused by the model
error alone, increasing especially in case of even slight rotations between interface
and image sensor.

Aside from other sources of error not present in the synthetic data presented
here (e.g. errors in checkerboard detection), the measurement errors induced by
using an incorrect imaging model do not bode well for exact measurements of
underwater structures. This matches the conclusions drawn in [27, 6]: underwater
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different scales of the z-axis.

SfM so far works even in case of several thousand images, however, navigational
data or time consuming bundle adjustment methods are required to stabilize the
motion computation and reduce drift.

6 Conclusion and Future Work

We have discussed three different types of camera models, which are used to deal
with refraction effects on underwater images.

First, it was shown that the often used pinhole camera model is invalid due
to refraction at the camera housing, although it is common in the literature.
The accuracy analysis for the perspective model shows that the model error is
not negligible and grows with increasing interface distance and with stronger
tilt of the interface with respect to the image sensor. Applications like stereo
measurements, mosaicking for navigation, and Structure from Motion all rely on
accurate geometrical measurements. Especially Structure from Motion is prone
to errors due to drift in pose estimation and we believe that the systematic error
caused by using a wrong model for refractive effects adds an unnecessary source
of drift.

Second, the ray-based camera models have a completely derived theory for
SfM, but no implementation has been tried on real underwater images yet. In
addition, the high degree of freedom caused by individually parametrized rays
for each pixel makes robust calibration difficult or even infeasible in underwater
environments.

Third, physically modeled interfaces allow to compute refraction explicitly
without needing a high degree of freedom. Only the parameters describing the
underwater housing with respect to the camera are required in addition to the
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perspective scenario. In medium gray (cyan in the color version) (tilt = 0.5◦, d = 20)
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calibrated camera is used to compute the reconstruction using a classical SfM approach.
On the right, error curves for the different scenarios are shown.

classic perspective camera model. Applications like SfM, mosaicking, and stereo
based measurements could therefore profit from using such a model because the
systematic error induced by using an approximate, perspective camera model
can be eliminated by modeling refraction explicitly. Future Work will include
robust calibration of the interface parameters and application of the physical
model to underwater images.
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