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Abstract— This work presents a system for 3D reconstruction
from underwater images or video. Aside from a camera in an
underwater housing, no special equipment is required. However,
if navigational data is available, it is utilized in the algorithm.
The algorithm is in essence a classical structure from motion
approach, which is adapted to account for the special imaging
conditions. Hence, there is no need for the camera to follow
a specialized trajectory. Adaptions to the underwater imaging
environment include a special filtering of background and floating
particles, which allows a robust estimation of the camera poses
and a sparse set of 3D points. Based on the estimated camera
track, dense image correspondence computation enables building
a detailed 3D surface model. Once the 3D surface model is
completed, the colors of the texture are corrected by a physical
model for underwater light propagation, allowing to view the
model without the effects of scattering and attenuation or to
simulate the effects of water on light in a 3D viewer.

I. INTRODUCTION

Underwater objects and structures like black smokers, ship
wrecks, or coral reefs, which can only be observed by diving
personally or operating a submarine, are difficult to study.
Divers or submarines equipped with cameras provide image
sequences of such objects. The approach presented in this
work utilizes this information by computing 3D reconstruc-
tions based on underwater video. 3D reconstructions can for
example be used for volumetric measurements, documentation,
and presentation to the general public.

This project is part of the Future Ocean Excellence cluster 1

and aims to investigate feasibility and limitations of computing
3D reconstructions from videos of deep sea floor structures.
The examples studied in this work are seafloor hydrothermal
systems - or more precisely black smokers. The black smokers
in question are found in the Atlantic ocean at 4◦48′S and
12◦23′W at a water depth of approximately 3039 m. Con-
sequently, a remotely operated vehicle, the ROV Kiel 6000
(see figure 1) is needed to capture the video sequences. It is
equipped with several cameras, one of them being a HDTV
video camera. In addition, a set of rough navigation data is
recorded that is used to predict the camera path and allows
quantitative measurements.

1http://www.ozean-der-zukunft.de/

In the last years so called structure-from-motion approaches
(SfM) like for example [13] or [4] have proven successfull
for good imaging conditions on land, by utilizing the 3D
information implicitly contained in the image sequence. One
aim of this project is the adaptation to the special underwater
imaging conditions, which cause a variety of difficulties that
need to be considered. For example, the rigid scene assumption
is violated by floating particles, fish, and other moving animals
and in case of black smokers sometimes large amounts of
smoke. Another challenge arises from the underwater light
propagation. In contrast to light propagation in air, the single
light rays are much more effected by the densly packed water
molecules: they are attenuated and scattered, having a great
effect on the image colors. In addition, light rays are refracted,
when entering the camera housing, causing a different focal
length underwater than in air and even 3D distortion effects
(see [16]).

Taking these challenges into consideration, we propose a
structure from motion system allowing to compute detailed
3D reconstructions from underwater objects or scenes. Figure
2 shows an overview of this method. Complementary to other
comparable approaches (see [2] or [5]), only one camera is
used instead of assuming a stereo rig. Other than in [2], the
camera does not have to follow a predefined path, but can
capture video from rigid, local seafloor structures. This is par-
ticularly different to [12], where known man-made structures
are assumed.

The initial intrinsic camera calibration in figure 2 is pro-
vided by a calibration procedure as described in [15]. After
that, the next steps depicted in figure 2 follow the classical
approach for SfM as described in [13], but use special outlier
detection, based on water/object segmentation, to filter out the
usually noisy background of the images. After initialization
from an image pair by exploiting the epipolar image geometry,
the other frames of the sequence need to be added. However,
in contrast to [11], a frame-to-frame pose estimation based
on 2D-3D correspondences is computed sequentially, resulting
in a complete reconstruction of the camera path. In both
cases, initialization and 2D-3D pose estimation, the rough
navigation data is used as a pose prediction and refined. Once



Fig. 1. ROV Kiel 6000

the structure from motion routine is completed, resulting in a
sparse 3D cloud and reconstructed camera path, we compute
depth for almost every pixel in each view in the camera
path. This is essentially different from [11] and allows the
computation of much more detailed and accurate models than
linear interpolation between a sparse set of 3D points.

However, for a realistic 3D visualization the colors of the
image need to be corrected. Due to wavelength dependent
scattering and absorption of the different wavelengths of light
in water, the image color has a blue or green hue depending
on the distance between object and camera. 3D visualization
includes the possibility of virtually moving around the object
in question interactively, thus changing distances between the
observer and the object. Therefore, the colors of the object do
not have the correct hue. Consequently, a method is being
developed, to correct the colors of the images based on a
physical model of underwater light propagation. The physical
model is similar to the ones used in [14] or [17], but unlike
[17] does not require any special equipment. The model’s
parameters can be determined because the depth for each point
is already known at this point, and it is possible to determine
several 2D points for each 3D point that lie in a neighborhood
with preferably constant colors. Such a color correction will
allow to view the object without the effects of color attenuation
due to water.

The paper is organized as follows. First, the imaging plat-
form is introduced, then camera model and calibration are
described briefly. After a section on notation and background,
the algorithm will be described with special emphasis on the
changes made for the underwater imaging environment. A
section on implementation and results summarizes some of
the tests that have been conducted. The paper is concluded
with some suggestions for future work.

II. ROV KIEL 6000
Images for this project are delivered by the HDTV camera

mounted on the remotely operated vehicle ROV Kiel 6000 (fig.
1). It can reach water depths up to 6000 m and is equipped
with several cameras for navigation (black and white) and
image capturing (color) which are listed in table I. A fiber

Fig. 2. Diagram of the structure from motion approach.

TABLE I
ROV KIEL 6000 CAMERAS AND ILLUMINATION

# Type
1 HDTV-Camera Kongsberg Maritime OE14-500
2 color video cameras (SD, standard PAL) Kongsberg Maritime

OE14-366 MKII
3 black/white video OCTOPUS GmbH
1 Digital still camera , 5 Mpix, 4 x optical zoom, Kongsberg

Maritime OE14-366 MKII 1-CCD
2 400 W HMI/MSR (SeaArc 2)
8 250 W Halogen (Deep Multi SeaLite)
2 70 W HID (SeaArc 5000)
1 Underwater Flashgun Kongsberg Maritime OE11-242

optic cable transfers the image data to the ship operating the
ROV, where the data is captured and stored as YCbCr raw
data. The video data is grabbed by the HDTV camera with
25 frames per second. During capturing, the scene in question
is illuminated by several lights (see table I), mounted near
the ROV’s top resulting in a distance of about 2m to the
HDTV camera, which is fixed near the bottom. [6] argues
that increasing distances between light source and camera
improves the image quality, especially the contrast. The ROV’s
architecture maximizes this distance between light source
and HDTV camera, thus allowing the highest possible image
quality with this camera.

The navigation data is delivered by the ROV twice per
second and gives information about velocity in x-, y-, and z-
direction and the ROV’s orientation in Euler-angles describing
pitch, yaw, and roll.

III. CAMERA MODEL AND CALIBRATION

Camera calibration for underwater images is more complex
than in air - when light crosses the water-air interface, as it
does when entering the camera housing, light rays are refracted
at the water-air interface. That is why the camera needs to be
calibrated in water or the camera calibration above water needs
to be converted as described in [7]. If the camera is calibrated
in air or even if the camera is calibrated underwater in a tank,
especially the focal length is errorneous because the index
of refraction changes with pressure, temperature, and salinity.



The change in focal length is discussed in [10], concluding
that the calibration can only be exact, if conducted on-site,
which is often complex or impossible.

However, in this case, the initial projective 3D recon-
struction can be computed with an approximative camera
calibration and is updated to an Euclidean reconstruction later
in the algorithm, when a bundle adjustment step [4] is applied
to refine the camera calibration. So in this project, a calibration
above water or off-site in a water tank is sufficiently accurate.

The camera model used is the classical pinhole camera
model extended to incorporate radial distortion. The model’s
parameters can be grouped into intrinsic and extrinsic pa-
rameters. The intrinsic parameters describe the camera’s in-
ternal characteristics, while the extrinsic parameters describe
the camera’s position and orientation in the world coordi-
nate system. In order to calibrate the intrinsic parameters, a
checkerboard pattern is used to take several images of a plane
with known dimensions. Because the checkerboard pattern
can be easily recognized by computer vision algorithms, it
is possible to determine the rays connecting 2D points in
the image and 3D points on the checkerboard. This allows
measurement of the whole imaging space (see [15] for details)
resulting in the intrinsic camera parameters described in a
camera matrix K. K is dependent on f , the focal length, on
a, the aspect ratio of the pixels, and on (cx, cy), the principal
point. Additionally, the coefficients describing radial distortion
are estimated. Knowing the radial distortion parameters allows
undistorting 2D points in images which leads to the following
model of projection used throughout the algorithm.

When taking an image, a set of 3D points is projected
onto 2D points. Using projective geometry, this relation can
be expressed with homogenous points [4]. A 3D point M =
(X,Y, Z, 1)T is projected onto a 2D point m = (x, y, 1)T

by a 3 × 4 projection matrix P: m ∼= PM . P encodes
the camera’s orientation R in a global coordinate system, its
center of projection C, and intrinsic camera parameters K in
P = KRT [I| − C].

A projection matrix P and the corresponding image are in
the following often referred to as camera. It is meant as a short
form for camera pose and the image taken from this pose. So
when speaking of several cameras, we mean several images
taken from different poses. The only physical camera used, is
the HDTV camera mounted on the ROV.

The intrinsic parameters are now known from the calibra-
tion, the SfM algorithm is used to determine the extrinsic
parameters and the bundle adjustment will refine both.

IV. ALGORITHM

A. Structure from Motion

When an image sequence has been recorded and the initial
set of intrinsic camera parameters has been determined, the
3D reconstruction can be computed. The image sequences
delivered by the HDTV camera at 25 frames per second result
in a huge amount of data - a 3 minute video adding up to about
27 Gigabytes with 4500 images. For memory reasons we so

Fig. 3. Correspondences tracked over the image sequence.

far only process subsequences consisting of a few hundred
images.

When applying the reconstruction algorithm to a subse-
quence, the first step consists of relating the images of the
sequence to each other. Therefore, features are detected in
each image as a first step. The feature detector used is
a corner detector based on image gradients; pixels with a
neighborhood containing large gradients are detected. After
the feature detection, each feature is undistorted and then
normalized with the inverse camera matrix K−1. The features
are tracked from image to image by the KLT tracker (see [8]
for details), which registers the displacement between features.
Figure 3 depicts the tracks the features have taken over the last
few images. The KLT tracker is a good solution to the tracking
problem in this case because the input image sequence consists
of dense video: the displacement between two consecutive
images is very small and the tracking can be implemented
efficiently. The resulting correspondences between two images
are called 2D-2D correspondences in the following.

In most cases of underwater images analyzed for this
project, the images contained some structure and a lot of
background, where only water was visible. However, due
to floating particles and noise added by the camera, some
spurious features are always detected on the background
depicting floating particles in the water. One of the adapta-
tions to underwater images made in this project consists of
computing a segmentation image, which allows to segment
and eliminate those erroneous 2D correspondences. In figure
4 the green correspondences are the ones kept, while the red
ones have been categorized to be part of the background. The
segmentation is done on the color images, based on a color
sample taken from a region, which contains water in all the
images. A statistical analysis of the rgb color vectors of the
sample determines the range of colors considered to be water.

Once the errorneous background correspondences have been
removed, the epipolar geometry - or more precisely - the essen-
tial matrix is determined based on the correspondences. The
essential matrix E is a relation for the 2D-2D correspondence
m1,m2 [4]:



Fig. 4. Errorneous red points are eliminated based on background/foreground
segmentation.

mT
2 Em1 = 0. (1)

Relating the 2D-2D correspondences in this way, the essen-
tial matrix captures the relative pose between two views.

The computation of the essential matrix is done using the
RANSAC algorithm [3] in order to deal with outliers in the
2D-2D correspondences. However, in this project additional
navigation data poses exist. The RANSAC algorithm receives
the essential matrix compatible to these poses as a guess and
they are refined with respect to the exact feature correspon-
dences. Because of the segmentation step eliminating error-
neous correspondences, this works accurately. If the refined
navigation data poses provide a solution accurate enough, the
RANSAC is terminated. If not, the RANSAC determines a
more accurate essential matrix based solely on the 2D-2D
correspondences, yielding the corresponding camera poses.
That means that if no navigation data exists or if it is
inaccurate, the essential matrix will be computed nonetheless.

After the poses of the first set of cameras are known, a
sparse cloud of 3D points is triangulated. Subsequently, the
other images are incorporated sequentially with a 2D-3D pose
estimation [4]. Once again, the navigation data poses are
tried as guesses for the RANSAC routine. They are refined
to fit the 2D-3D correspondences and discarded if found to
be too inaccurate. As the reconstruction advances along the
camera trajectory, more 3D points are triangulated whenever
new features are found. After the whole camera path has
been computed, the sparse 3D point cloud already provides an
approximation of the 3D structure to be reconstructed. Since
the image sequence is dense, some camera poses and 2D points
provide only little new information, but adding up to use vast
amounts of memory. Therefore, only camera poses that provide
enough innovation - meaning there is enough baseline between
them - are kept in the camera path. This procedure is described
in more detail in [1].

After all the cameras have been added to the reconstruction,
a bundle adjustment step [4] is applied to optimize all rays
connecting a 3D point with a camera center running through
the corresponding 2D point. In addition, the intrinsic camera

Fig. 5. Reconstructed camera path and sparse 3D point cloud.

parameters are optimized, correcting a potential inaccuracy in
the initial intrinsic parameters like focal length.

If the navigation data poses did not provide guesses accurate
enough, the scale of the scene is unknown because based
on images solely, it is impossible to distinguish between for
example toy cars or real cars. Provided that the navigation data
poses have served as successfull guesses in the RANSAC rou-
tines, the scene has approximately the correct absolute scale.
However, the poses were optimized to fit to the 3D point cloud
more accurately. Therefore, an extra step is needed to fix the
absolute scale in both cases. After the SfM algorithm, all that
is needed to fix the absolute scale is a scaling transformation
for the whole scene. By considering all camera positions and
comparing the computed ones with the navigation data poses,
such a scaling transformation is computed. See figure 5 for a
reconstruction result.

B. Dense Depth Estimation and 3D Surface Model

During the SfM algorithm, the reconstructed 3D structure
only consists of a sparse 3D point cloud (see figure 5). Because
of occasional outliers in the point cloud and an unknown
coherence between the 3D points, a classical triangulation like
the Delaunay triangulation does not always yield satisfying
3D models. That is why we propose an intermediate step of
computing dense depth maps for each image that has been
kept in the camera path reconstruction of the SfM part of the
algorithm.

Depth maps contain the distance between the center of
projection of the camera and the 3D point in the scene. Up
until now, 3D points have only been computed for features,
now the depth information needs to be computed for each
pixel. This is possible because at this point, the camera poses
of several neighboring images are known and can all be used
for depth estimation.

When computing the depth map for one view (the mas-
terview), the others are used in pairwise stereo to produce
depth maps with the masterview. In order to compute the
depth map, each stereo pair is rectified. Rectification [1] is
the process to align an image pair such that both views have
only horizontal parallax. On the rectified images, either a
local sum-of-absolute-differences method (time efficient) or a



Fig. 6. Top: unfiltered depth map shows distance between 3D point
and camera center (darker means further away), bottom: depth map with
background filter.

global stereo dynamic programming method [1] (high quality
depth maps) is used to calculate the corresponding disparity
map. The time efficient local method allows the computation
of previews of the surface model by transferring the dense
depth estimation to the GPU. Because of the rectification, the
matches are found on the horizontal parallaxing lines resulting
in a one-dimensional search problem, which is then solved by
either one of the methods. If the model needs to be detailed
and of high quality, the depth estimation is done by the global
approach, which yields far denser and smoother depth maps
than the local approach on the GPU. The set of depth maps
produced by either one the methods, is fused with the others,
so that a detailed, robust depth map is computed for each
masterview.

In the underwater case a lot of depth values are estimated in
parts of the images that contain only water and are therefore er-
roneous depths. In order to eliminate these errorneous depths,
the same segmentation approach described in the section above
is applied to the depth maps. Results of this segmentation can
be seen in figure 6

Once a depth map is computed for each image, 3D surface
models can easily be generated from the depth maps and
then combinded into one model. For a better visualization,
the colors need to be mapped onto the model.

C. Color Correction

Colors of underwater images are dominated by a strong
green or blue hue. This is due to the strong wavelength
dependent attenuation of the different colors. In order to
provide an accurate visualization of a scene, it is necessary
to remove the green or blue hue and try to reconstruct the
real colors of the object in question. Color correction is done

by using a physical model for underwater light propagation.
A light ray from the object travels through a water body to
the camera (along the line of sight, short: LOS). On its way
it can be absorbed or scattered on water molecules or other
matter in the water, depending on its wavelength. In addition,
other rays can be scattered into the line of sight adding to the
amount of light coming from the object (for a more detailed
discussion refer to [9]).

That suggests that the light reaching a pixel of the camera’s
CCD sensor consists of two parts: one coming from the object
directly called signal and one being scattered into the LOS,
called backscatter. Similar models for light propagation are
commonly used in the literature, see for example [17] and
[14].

The signal Sijλ is the attenuated value of the object color
Liobjλ :

Sijλ = Liobjλe
−2zijηλ , (2)

where the 3D point i is observed from camera j. λ depicts the
wavelength, but is modeled in three discrete color channels
(rgb). zij is the distance between camera center j and 3D
point i. ηijλ is the attenuation coefficient for the wavelength λ
of that particular water body.

The backscatter is amplified with increasing distance be-
tween camera center and object as there is a higher chance
of light being scattered into the line of sight, the longer the
distance is:

Bijλ = B∞λ
(1− e−ηλz

ij

), (3)

where B∞λ
is the color value of channel λ of the so called

veiling light as defined in [17]. It is the color that can be
observed at the background, where no structure is visible, just
water.

Both components are added to define the value of the pixel
measured:

Iijλ = αλ(S
ij
λ +Bijλ ), (4)

where αλ is a camera parameter that is applied to each
channel separately. αλ depicts the white balance, being a
multiplier to each channel, which is applied by the camera
to account for the color of light.

Figure 7 shows how the light of different wave lengths on
the different channels is attenuated or scattered into the LOS
respectively. One characteristic of water is that the red colors
are attenuated stronger than green and blue. This characteristic
can be modeled through η, which has been set to ηr = 0.4 in
the example, while ηg = 0.1 and ηb = 0.05. The veiling light
color has been set to B∞r

= 0.1, B∞g
= 0.2, and B∞b

= 0.5.
The real color of the object considered was Lobj = 1.0 (white)
for all three channels. As can be seen, the red part of the
light is covered by the backscatter component after traveling
through water for about 3m. ηr = 0.4 is a fairly high value for
a real water body, but it clarifies the challenge of recovering
the colors. It becomes clear that the recovery of the red colors
is limited to a few meters, which should be sufficient to cover
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Fig. 7. Attenuation and backscattering on the different color channels
depending on the distance traveled through water to reach camera. Solid lines
depict attenuation, dashed lines backscatter.

interesting close up frames of black smokers, ship wrecks, etc.
If the scene in question is further away from the camera, the
color correction task quickly becomes impossible. Figure 8
shows a simulation of a colored checkerboard underwater at
two distances from the camera. One can observe that the red
color at the top is far more strongly attenuated, then the blue
and green. Figure 9 shows the same images as in figure 8, but
with corrected colors.

The model leads to the following assumption: a 3D point
i of an object has a constant color, however, viewed from
different points of view, the color changes with the distance
between 3D point and camera due to the water body in
between. Hence, different camera positions with respect to
the 3D point yield different color measurements Sijλ , which
depend on the model. Knowing which points are white - see
lime parts on black smoker or checkerboard - means that one
knows the color of Liobjλ . A set of white points seen from
several images and different distances can be used to estimate
all three parameters for each channel. This can be done by
optimizing the following error function:

ελ = argminαλ,ηλ,B∞λ (5)∑
i

∑
j

Iijλ − αλ(1
i
λe
−2zijηλ +B∞λ

(1− e−ηλz
ij

))

 .

Each channel is optimized separately. The initialization for
the parameters is fairly straight forward: B∞ is sampled from
the water background of the images directly. α is set to 1
for each channel and η is set to 0.1 for fairly clear water.
Usually the red channel is attenuated stronger then the other
two, however we found that conditions of the water are very
different, owing the special composition of floating particles
in the water body present, so it is difficult to find a better
guess.

Once the texture colors have been corrected, the 3D model
needs to be visualized by a 3D viewer. We use an OpenGL-

Fig. 8. Simulation of viewing a colored checkerboard underwater from
different distances.

Fig. 9. Colore correction applied to synthetic underwater checkerboard
images from figure 8.

based viewer that allows the user to view the reconstructed
scene interactively. Since the texture colors have been repaired,
the object can be viewed without the attenuation or - if wished,
the effects can be simulated explicitly, which means that if the
user is close to the object, the colors are less dominated by
green and blue than if he moves further away, providing a far
more realistic visualization of the underwater scene, than the
non-color corrected object alone.

Having explained the algorithm, the next section exhibits
some results.

V. RESULTS

In this section some results generated with the proposed
system are presented.

A. Color Correction on Synthetic Data

The color correction algorithm has been applied to synthetic
data in order to test its performance and robustness. A random
set of 3D points has been generated and their color has been
set to white. Then the 3D points were viewed from different
distances, with the effect of the water being simulated. The
optimization routine was then used to retrieve the parameters
for η, B∞, and α.

Figures 10 and 11 show the results. Two testing scenarios
are depicted. In 10 the number of points has been changed,
testing the robustness, when only very few white points have
been used. For this test noise with a magnitude of 1% has
been added to the colors. The top image shows the results of
estimating η, the bottom the results of estimating the veiling
light color. As can be seen, the estimation has been fairly
stable as long as there where more than 100 points.

In the second test case (figure 11), the distance deviation
between the closest and farthest point has been varied. In
general the closest point has always been 3m away from
the camera centers. The maximum distance has been varied
between 3.5m and 12m causing a difference between 0.5m
and 9m as depicted in the figures. Figure 11 shows that



0 50 100 150 200 250
−10

−5

0

5

10

15%

Number of points

E
rr

o
r 

e
ta

 i
n
 %

 

 

red, 1% noise
green, 1% noise
blue, 1% noise

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

20

25 %

Number of points

E
rr

o
r 

v
e
ili

n
g
 l
ig

h
t 
c
o
lo

r 
in

 %

 

 

red, 1% noise
green, 1% noise
blue, 1% noise

Fig. 10. Estimation of parameters depending on the number of points. Top:
error when estimating η, bottom: error when estimating the veiling light color.

the estimation of η (top image) and the estimation of the
veiling light color (bottom image) generally become more
stable with growing distance between the points considered.
This is not surprising, since increasing distance differences
lead to increasing differences in color, therefore resulting in a
more stable estimation of the physical parameters involved.

The long term goal being a fully automatic estimation of the
parameters, up until now some assumptions need to be used
in the optimization process - the most important example are
the known white parts of the black smoker.

B. Real Data

Real image sequences captured by the ROV’s HDTV camera
from a black smoker have also been used to test the system.
Two subsequences were fed into the algorithm. They both
show the same black smoker, one sequence the upper part,
the other the bottom. Figures 12 and 14 show input image,
exemplary depth map, and screenshot from 3D surface model
for the upper part and the bottom part respectively. As can be
seen on the surface model, the global depth estimation method
delivers detailed and accurate depth maps, which can be used
for triangulation directly.

Figures 13 and 15 show the resulting 3D models with color
corrected texture. The color correction parameters have been
estimated based on the images of the top part (figure 13)
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Fig. 11. Estimation of parameters depending on distance between closest and
farthest point. Top: error when estimating η, bottom: error when estimating
the veiling light color.

containing large areas of lime, thus fullfilling the assumption
of known white color. The 3D surface of the model in figure
13 is based on the local depth estimation using a shiftable
window implemented on the GPU. This very fast method
delivers results not as accurate as the dynamic programming
approach in figure 15, but still good enough to give an accurate
impression of the scene.

Figure 16 shows the 3D reconstruction of a shipwreck that
is based not on video, but single photos. Imaging conditions
were difficult in this case - visibility was less than 1m. Hence,
the ship wreck of several meters could not be observed in one
photograph. So in this case, the 3D reconstruction provides a
crucial visualization for divers and non-divers alike. There was
no data containing known white structures, so the automatic
parameterization for the light propagation model could not be
done. Therefore, the color correction has been done with a
manual tool in this case (see figure 16 bottom).

VI. CONCLUSION AND FUTURE WORK

We have presented a system for 3D reconstruction based
on underwater video that requires no special equipment. 3D
models are computed complete with color correction and can
be interactively visualized in a 3D viewer. In the future, we are
expecting new sequences to analyze and the system is going
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Fig. 12. Top: one of the input images showing top part of a black smoker
at 4◦48′S and 12◦23′W (Atlantic Ocean) at depth 3039m, middle: dense
depth map for one image (shows distance from camera to 3D point for each
pixel: darker means further away), bottom: untextured 3D surface model.

to be extended to adapt even more to the underwater imaging
conditions. That includes a self-calibration approach, merging
of models based on subsequences, a more robust estimation
of the color correction parameters without the assumption of
having known white color in the image, and special treatment
of known moving objects like animals for example fish and
crabs, floating particle, and smoke.
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Fig. 16. Reconstruction from single images of a shipwreck found in the Kiel fjord. Top: 3D surface model of the shipwreck, middle: textured model of the
shipwreck, bottom: 3D model with corrected color of the shipwreck.


