July 2, 2018: FB1 seminar

Dr. Sonya Legg, NOAA Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ (USA): "Internal tide-driven mixing: processes, parameterizations and impacts"

11:00, Lecture Hall, Düsternbrooker Weg 20

Diapycnal mixing plays an important role in the large-scale ocean overturning circulation, and much of the energy for this mixing derives from the tides. When the barotropic tides flow over topography, energy is transferred to internal waves at the tidal frequency, known as internal tides. These internal tides can lead to mixing only if they break, which occurs when the waves are nonlinear and often of sufficiently small vertical length-scales to permit shear instability. I will describe numerical simulations which examine some of the processes leading to nonlinear internal tides and wave breaking. Wave-wave interactions can transfer energy to waves of smaller vertical length-scales. A significant fraction of the internal tide energy can propagate away from the generation site in the form of low vertical modes, which can ultimately break on reflection from large amplitude topography such as continental slopes and shelf-break canyons. Finally, I will summarize recent attempts to parameterize the mixing which results from these different wave breaking processes and their impact on ocean climate simulations.

 

List of all FB1 seminars

  • GEOMAR Helmholtz Centre for Ocean Research Kiel 

    Wischhofstr. 1-3
    D-24148 Kiel
    Germany

    Phone: +49-431 600-0
    Fax: +49-431 600-2805
    E-mail: info(at)geomar.de