Research Division 1: Ocean Circulation and Climate Dynamics

Overview

Research Division 1 "Ocean Circulation and Climate Dynamics" consists of four research units: Marine Meteorology, Palaeo-Oceanography, Physical Oceanography and Ocean Dynamics.

Climate variations can be externally forced or internally generated by atmospheric and oceanic processes. The sediments of the seafloor and the organisms contained therein record these changes and are important marine climate archives. To decipher past and future mechanisms of climate change oceanographic, geological, and meteorological measurements at sea, analytical investigations in the laboratory, and computer simulations with complex ocean models are applied.

Research in the Division includes

  • Advancing our understanding of the physical processes and phenomena in the ocean and the atmosphere which are critical to the large-scale mean and variability of the ocean-atmosphere system.
  • Deciphering modern and past global changes in ocean circulation and climate by quantifying current variations in key aspects of the ocean-atmosphere system and exploring marine climate archives. In addition, water mass properties, marine organisms, and seafloor sediments provide unique data sets for the evaluation of the present and past state of our planet.
  • Developing and applying numerical models that incorporate process dynamics in order to allow realistic simulations of ocean variability and its interaction with the atmosphere and the ocean biogeochemistry,a prerequisite for assessing past changes on different time scales. These modelling results can be applied to explore the predictability of climate variability and anthropogenic change.

A particular strength of the division is a combined expertise in large-scale and process-oriented modelling, observational tools and sea-going capabilities to address the dynamics governing the present day system. These strengths, coupled with palaeo-oceanographic expertise allow the division to improve its understanding of past climate scenarios.

Accordingly, GEOMAR’s strategy is to examine the forcing mechanisms of present and past large-scale circulation variability including processes of ocean-atmosphere interaction. The research program of the respective disciplines is well integrated with international programmes related to future and past global change and variability.

The scientific research of the research units is embedded in the research program  'Changing Earth - Sustaining our Future', here mainly in topic 2, and the GEOMAR 2030 strategy with its Core Themes and Integrative Research Foci (IRF).

 

RD1 News

[Translate to English:] Ein beleuchtetes Forschungsschiff im Eis in dunkler Nacht
14.04.2025

Pioneering research reveals Arctic matter pathways poised for major shifts amidst climate change

New study provides unprecedented insight into highly variable and climate-sensitive transport pathways from the Siberian shelf to the Arctic Ocean

Sunset over the sea
11.04.2025

CO2 removal and storage: Which options are feasible and desirable?

A new framework helps to evaluate the feasibility of ocean-based CO2 removal processes and assesses their impact on humans and nature