Address:
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
FB2 Biogeochemical Modelling
Wischhofstr. 1-3
24148 Kiel, Germany
Office: Building 5, Tower 5, Level 5, Room 5.517
Phone.: +49 431 600-4507
E-Mail: ifrenger(at)geomar.de
Appointments
- Since 2024 ERCStG OSTIA research group lead, GEOMAR Helmholtz Centre for Ocean Research Kiel
- 2016 - 2023 Research Scientist, GEOMAR Helmholtz Centre for Ocean Research Kiel
- 2014 - 2015 Postdoctoral Research Fellow, Princeton University, US
- 2013 Postdoctoral Researcher, ETH Zurich, Switzerland
Education
- 2013 Ph.D. ETH Zurich, Switzerland
- 2009 M.Sc. University of Hamburg & Max Planck Institute for Meteorology, Germany
- 2006 Visiting Student, Dalhousie University, Halifax, Canada
- 2005 B.Sc. University of Hamburg, Germany
Projects
- DFG project CHOICE (2024 - 2027), project PI: Ocean heat and carbon storage under ambitious emission mitigation: Uncertainties due to the representation of ocean mesoscale eddies in a non-eddying Earth system model
- ERC project OSTIA (2024 - 2029), project PI: The ocean’s role in mitigating climate change: Mechanistic understanding of the legacy of anthropogenic heat and carbon in the ocean under net-negative carbon dioxide emissions.
- BMBF project Humboldt-Tipping II (2023 - 2025), PI Work Package 3: Detectability of change in the Humboldt upwelling ecosystem under global change.
Past projects
- BMBF project Humboldt-Tipping (2019 - 2023), PI Work Package 3: End-to-end ecosystem modelling of ecological tipping points in the Humboldt upwelling system.
- BMBF project CUSCO (2018 - 2022), PI Work Package 6: Spatially-explicit, individual-based modelling of trophodynamic processes in the Peruvian upwelling system; see also associated blog OCEANSTORIES.EBUS.
Teaching
- Fundamentals in Marine Biogeochemical Modelling (2016 - 2021, co-lecturer)
- Feedbacks in the Climate System: How to Make and Keep a Habitable Planet (2022, teaching assistant)
- Climate Seminar (2022, co-lecturer)
Publications
Peer-reviewed:
Submitted or in review:
Xue, T., Arteaga, L. A., Pahlow, M., and I. Frenger. Trophic amplification of Southern Ocean plankton emerges from changing seasonality.
Roberts , M. J., Reed, K. A., Bao, Q., Barsugli, J. J., Camargo, S. J., Caron, L.-P., Chang, P., Chen, C.-T., Christensen, H.-M., Danabasoglu, G., Frenger, I., Fučkar, N. S., ul Hasson, S., Hewitt, H. T., Huang, H., Kim, D., Kodama, C., Lai, M., Ruby Leung, L.-Y., Mizuta, R., Nobre, P., Ortega, P., Paquin, D., Roberts, C. D., Scoccimarro, E., Seddon, J., Treguier, A. M., Tu, C.-Y., Ullrich, P. A., Vidale, P. L., Wehner, M. F., Zarzycki, C. M., Zhang, B., Zhang, W. and M. Zhao (2024). High Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2582.
Wood, R. A., Baker, J. A., Beaugrand, G., Boutin, J., Conversi, A., Donner, R. V., Frenger, I., Goberville, E., Hayashida, H., Koeve, W., Kvale, K., Landolfi, A., Maslowski, W., Oschlies, A., Romanou, A., Somes, C. J., Stocker, T. F. and D. Swingedouw. Opportunities for Earth Observation to inform risk management for ocean tipping points. Accepted in Surveys in Geophysics. https://doi.org/10.1007/s10712-024-09859-3
Published
[25] Koeve, W., Landolfi, A., Oschlies, A., and Frenger, I. (2024). Marine carbon sink dominated by biological pump after temperature overshoot. Nature Geoscience, 17:1093-1099. doi.org/10.1038/s41561-024-01541-y
[24] Xue, T., Frenger, I., Hauschildt, J., and Oschlies, A. (2024). Mechanisms regulating trophic transfer in the Humboldt Upwelling System differ across time scales. Environmental Research Letters, 19:114014. doi.org/10.1088/1748-9326/ad78ec
[23] Frenger, I., Landolfi, A., Kvale, K., Somes, C. J., Oschlies, A., Yao, W. and W. Koeve (2024). Misconceptions of the marine biological carbon pump in a changing climate: Thinking outside the ‘export’ box. Global Change Biology, 30:e17124. doi.org/10.1111/gcb.17124.
[22] Xue, T., Terhaar, J., Prowe, A. E. F., Frölicher, T., Oschlies, A. and I Frenger (2024). Southern Ocean phytoplankton under climate change: A shifting balance of bottom-up and top-down control. Biogeosciences, 21:2473–91. doi.org/10.5194/bg-21-2473-2024.
[21] Seo, H., O'Neill, L. W., Bourassa, M. A., Czaja, A., Drushka, K., Edson, J. B., Fox-Kemper, B., Frenger, I., Gille, S. T., Kirtman, B. P., Minobe, S., Pendergrass, A. G., Renault, L., Roberts, M. J., Schneider, N., Small, R. J., Stoffelen, A., and Q. Wang (2023). Ocean mesoscale and frontal-scale ocean-atmosphere interactions and influence on large-scale climate: A Review. Journal of Climate, 36:1981-2013, doi.org/10.1175/JCLI-D-21-0982.1.
[20] Atkins, J., Andrews, O. and I. Frenger (2022). Quantifying the contribution of ocean mesoscale eddies to low oxygen extreme events. Geophysical Research Letters, 49:e2022GL098672, doi.org/10.1029/2022GL098672.
[19] Chien, C. T., Durgadoo, J. V., Ehlert, D., Frenger, I., Keller, D. P., Koeve, W., Kriest, I., Landolfi, A., Patara, L., Wahl, S. and A. Oschlies (2022). FOCI-MOPS v1 – Integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model. Geoscientific Model Development, 15:5987-6024, doi.org/10.5194/gmd-15-5987-2022.
[18] Hill-Cruz, M., Frenger, I., Getzlaff, J., Kriest, I., Xue, T. and Y. J. Shin (2022). Understanding the drivers of fish variability in an end-to-end model of the Northern Humboldt Current System. Ecological Modelling, 472:110097, doi.org/10.1016/j.ecolmodel.2022.110097.
[17] Lovecchio, E., Gruber, N., Münnich, M. and I. Frenger (2022). On the processes sustaining biological production in the offshore propagating eddies of the northern Canary Upwelling System. Journal of Geophysical Research: Oceans, 127:e2021JC017691, doi.org/10.1029/2021JC017691.
[16] Xue, T., Frenger, I., Oschlies, A., Stock, C. A., Koeve, W., John, J. G. and A. E. F. Prowe (2022). Mixed layer depth promotes trophic amplification on a seasonal scale. Geophysical Research Letters, 49:e2022GL098720, doi.org/10.1029/2022GL098720.
[15] Xue, T., Frenger, I., Prowe, A. E. F., Jose, Y. S. and A. Oschlies (2022). Mixed layer depth dominates over upwelling in regulating the seasonality of ecosystem functioning in the Peruvian Upwelling System. Biogeosciences, 19:455-475, doi.org/10.5194/bg-19-455-2022.
[14] Duteil, O., Frenger, I., & Getzlaff., J. (2021). The riddle of eastern tropical Pacific Ocean oxygen levels: The role of the supply by intermediate-depth waters. Ocean Science, 17, 1489–1507, https://doi.org/10.5194/os-17-1489-2021.
[13] Frenger, I., Bianchi, D., Stührenberg, C., Oschlies, A., Dunne, J. , Deutsch, C., Galbraith, E., and F. Schütte (2018a). Biogeochemical role of subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms, and microbial stewpots? Global Biogeochemical Cycles, 32:226-249, doi.org/10.1002/2017GB005743.
[12] Frenger, I., Gruber, N., and M. Münnich (2018b). Imprint of Southern Ocean mesoscale eddies on chlorophyll, Biogeosciences, 15:4781-4798, doi.org/10.5194/bg-15-4781-2018.
[11] Song, H., Long, M. C., Gaube, P., Frenger, I., Marshall, J., and D. J. McGillicuddy Jr. (2018). Seasonal variation in the correlation between anomalies of sea level and chlorophyll in the Antarctic Circumpolar Current (2018), Geophysical Research Letters, 45:5011–5019, doi.org/10.1029/2017GL076246.
[10] Tarshish, N., Abernathey, R., Zhang, C., Dufour, C., Frenger, I., and S. Griffies (2018). Identifying Lagrangian coherent vortices in a mesoscale ocean model, Ocean Modelling, 130:15-28, doi.org/10.1016/j.ocemod.2018.07.001.
[9] Yamamoto, A., Palter, J., Dufour, C., Griffies, S., Bianchi, D., Claret, M., Dunne, J., Frenger, I., and E. Galbraith (2018). Roles of the ocean mesoscale in the lateral supply of mass, heat, carbon and nutrients to the Northern Hemisphere subtropical gyres, Journal of Geophysical Research - Oceans, 123:7016–7036, doi.org/10.1029/2018JC013969.
[8] Dufour, C., Morrison, A., Griffies, S., Frenger, I., Zanowski, H. and M. Winton (2017). Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows, Journal of Climate, 30:7719-7737, doi.org/10.1175/JCLI-D-16-0586.1.
[7] Byrne, D., Münnich , M., Frenger, I., and N. Gruber (2016). Mesoscale atmosphereocean coupling enhances wind energy transfer, Nature Communications, 7:ncomms11867, doi.org/10.1038/ncomms11867.
[6] Haumann, A., Gruber, N., Münnich, M., Frenger, I., and S. Kern (2016). Salinity changes in the Southern Ocean through sea-ice transport, Nature, 537(7618):89-92, doi.org/10.1038/nature19101.
[5] Byrne, D., Papritz, L., Frenger, I., Münnich, M., and N. Gruber (2015). Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high resolution coupled model over the South Atlantic, Journal of the Atmospheric Sciences, 72:1872–1890, doi.org/10.1175/JAS-D-14-0195.1.
[4] Dufour, C., Griffies, S., de Souza, G., Frenger, I., Morrison, A., Palter, J., Sarmiento, J., Galbraith, E., Dunne, J., Anderson, W., and R. Slater (2015). Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean, Journal of Physical Oceanography, 45:3057–3081, doi.org/10.1175/JPO-D-14-0240.1.
[3] Faghmous, J., Frenger, I., Warmka, R., Lindel, A., Yao, Y., and V. Kumar (2015). A daily global mesoscale ocean eddy dataset from satellite altimetry, Scientific Data, 2:150028, doi.org/10.1038/sdata.2015.28.
[2] Frenger, I., Münnich , M., Gruber, N., and R. Knutti (2015). Phenomenology of Southern Ocean eddies, Journal of Geophysical Research – Oceans, 120:7413-7449, doi.org/10.1002/2015JC011047.
[1] Frenger, I., Gruber, N., Knutti, R., and M. Münnich (2013). Imprint of Southern Ocean eddies on winds, clouds and rainfall, Nature Geoscience, 6:698-612, doi.org/10.1038/ngeo1863.
Other:
Nuijens, L., Wenegrat, J., Dekker, P., Pasquero, C., L.W. O’Neill, Ardhuin, F., Ayet, A., Bechtold, P., Bruch, W., Laurindo, L., Chen, X., Desbiolles, F., Foster, R., Frenger, I., George, G., Giesen, R., Hayden, E., Hell, M. C., Iyer, S., … Zippel, S. (2024). The air-sea interaction (ASI) submesoscale: Physics and impact. doi.org/10.5065/78ac-qd31
Groeskamp, S., de Lavergne, C., Holmes, R., Tamsitt, V., Frenger, I., Chapman, C.C., Newsom, E., and G.J. Stanley (2019). Climate recorded in seawater: A workshop on water-mass transformation analysis for ocean and climate studies. Bull. Amer. Meteor. Soc., doi.org10.1175/BAMS-D-19-0153.1
Dufour, C., Frenger, I., Frölicher, T., Gray, A., Griffies, S., Morrison, A., Sarmiento, J., and S. Schlunegger (2015). Anthropogenic carbon and heat uptake by the ocean: Will the Southern Ocean remain a major sink? Ocean Carbon & Biogeochemistry, joint US CLIVAR & OCB newsletter, fall edition.
Frenger, I. (2013). On Southern Ocean eddies and their impacts on biology and the atmosphere. PhD thesis, ETH Zurich, Switzerland, doi.org/10.3929/ethz-a-009938120.
Frenger, I. (2008). Investigation of the impact of land surface changes in West Africa on regional climate: Simulations with the regional climate model REMO (original in German). Master's thesis, University of Hamburg, Germany (library sig.: Dipl.-Arb. MI388).
Frenger, I. (2005). The Database ValiData, Proc. COST-ESF Workshop Quality Assurance of Mirco-Scale Meteorological Models, Hamburg, Germany, 150p.
Frenger, I. (2005). Evaluation and processing of in-situ measurements of the project VALIUM (original in German). Bachelor's thesis, University of Hamburg, Germany (library sig.: BSC Met 003).
See also OceanRep.
Data & Software
Data:
Frenger, I., Münnich, M., and N. Gruber (2018). Southern Ocean mesoscale eddies; doi:10.3929/ethz-b-000238826; data access.
Haumann, F. A., Gruber, N., Münnich, M., Frenger, I., and S. Kern (2016). Antarctic sea-ice freshwater fluxes associated with freezing, transport, and melting; EnviDat. doi:10.16904/8; data access.
Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., Kumar V. (2015). Data from: A daily global mesoscale ocean eddy dataset from satellite altimetry; doi:10.5061/dryad.gp40h; data access.
Software:
Ocean eddy tracking code (Matlab based) available here.