Subproject B2 Laboratory Experiments

Methane hydrates will be exposed to CO2 to gain natural gas (methane) and to store CO2 in hydrates. Gas swapping in hydrates is possible since CO2 hydrates are thermodynamically more stable than methane hydrates under the pressure and temperature conditions prevailing below the seafloor.

 

Gas swapping in hydrates is, however, a slow reaction. The water cages enclosing the methane molecules need to be stimulated or destabilized by the addition of heat or chemicals to enhance the velocity of this gas exchange reaction. 

Project B2 will, thus, test various approaches on the laboratory scale in order to:

  • Accelerate the conversion of methane hydrates into CO2 hydrates
  • Enhance the rate of natural gas production from hydrates
  • facilitate the storage of CO2 in hydrates. 

Methods

In a first step, methane hydrates will be produced in sand matrix. Subsequently, they will be exposed to CO2, heat and various chemicals to gain methane gas, to form CO2 hydrates and to accelerate the gas swapping in hydrates. The kinetics of gas swapping will be studied under controlled conditions (50 – 400 bar, 0 – 50°C) applying various detection methods (gas sensors, gas chromatography, Raman spectroscopy, solid state 13C-NMR spectroscopy, etc.). The following reagents and reactions will be studied experimentally:

  • Methane hydrates + liquid CO2
  • Methane hydrates + liquid CO2 + heat
  • Methane hydrates + supercritical CO2
  • Methane hydrates + liquid CO2 + additional gases (N2, Ar, …)
  • Methane hydrates + liquid CO2 + polymers

The heat will be provided by partial burning of methane or by the injection of warm surface waters using a mega pump approach.

Literatur

AuthorTitleYearJournal/ProceedingsReftypeDOI/URL
Althaus, W., Graen-Heedfeld, J., Hadulla, A., Schlüter, S., Schultz, H.J. & Schulzke, T. Verfahren und Vorrichtung zur Gewinnung und Förderung von Gashydraten und Gasen aus Gashydraten 2003 (WO/2003/021079)  patent  
Bigalke, N., Rehder, G., Gust, G., Michl, F., Labahn, E. & Steffen, H. A new approach to investigate effects of CO2 sequestration within the deep ocean using advanced pressure lab technology. 2006 Geophysical Research Abstracts
Vol. 8(02825,) 
article URL 
Brewer, P., Peltzer, E., Friederich, G. & Rehder, G. Experimental determination of the fate of rising CO2 droplets in sea water 2002 Environmental Science and Technology
Vol. 36(24), pp. 5441–5446 
article DOI  
Brewer, P.G., Paull, C., Peltzer, E.T., Ussler, W., Rehder, G. & Friederich, G. Measurements of the fate of gas hydrates during transit through the ocean water column 2002 Geophysical Research Letters
Vol. 29(22), pp. 4 
article DOI  
Dholabhai, P.D., Englezos, P., Kalogerakis, N. & Bishnoi, P.R. EQUILIBRIUM CONDITIONS FOR METHANE HYDRATE FORMATION IN AQUEOUS MIXED ELECTROLYTE-SOLUTIONS 1991 Canadian Journal of Chemical Engineering
Vol. 69(3), pp. 800-805 
article  
Esser, D. Mets – The Tool for Pipeline Inspection 2002 Sea Technology, pp. 51  article URL 
Haeckel, M., Suess, E., Wallmann, K. & Rickert, D. Rising methane gas bubbles form massive hydrate layers at the seafloor 2004 Geochimica Et Cosmochimica Acta
Vol. 68(21), pp. 4335-4345 
article DOI  
Hensen, C. & Wallmann, K. Methane formation at Costa Rica continental margin - constraints for gas hydrate inventories and cross-decollement fluid flow 2005 Earth and Planetary Science Letters
Vol. 236(1-2), pp. 41-60 
article DOI  
Luff, R., Greinert, J., Wallmann, K., Klaucke, I. & Suess, E. Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites 2005 Chemical Geology
Vol. 216(1-2), pp. 157-174 
article DOI  
Luff, R., Haeckel, M. & Wallmann, K. Robust and fast FORTRAN and MATLAB libraries to calculate pH distributions in a non-steady state model for aqueous systems 2001 Computers & Geosciences
Vol. 27(2), pp. 157-169 
article DOI  
Luff, R. & Wallmann, K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances 2003 Geochimica Et Cosmochimica Acta
Vol. 67(18), pp. 3403-3421 
article DOI  
Luff, R., Wallmann, K. & Aloisi, G. Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities 2004 Earth and Planetary Science Letters
Vol. 221(1-4), pp. 337-353 
article DOI  
Ohgaki, K., Takano, K., Sangawa, H., Matsubara, T. & Nakano, S. Methane exploitation by carbon dioxide from gas hydrates - Phase equilibria for CO2-CH4 mixed hydrate system 1996 Journal of Chemical Engineering of Japan
Vol. 29(3), pp. 478-483 
article  
Rehder, G., Brewer, P.W., Peltzer, E.T. & Friederich, G. Enhanced lifetime of methane bubble streams within the deep ocean 2002 Geophysical Research Letters
Vol. 29(15) 
article DOI  
Rehder, G., Kirby, S.H., Durham, W.B., Stern, L.A., Peltzer, E.T., Pinkston, J. & Brewer, P.G. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth 2004 Geochimica Et Cosmochimica Acta
Vol. 68(2), pp. 285-292 
article DOI  
Reuter, R., Badewien, T.H., Bartholoma, A., Braun, A., Lubben, A. & Rullkotter, J. A hydrographic time series station in the Wadden Sea (southern North Sea) 2009 Ocean Dynamics
Vol. 59(2), pp. 195-211 
article DOI  
Schicks, J., Neumann, D., Specht, U. & Veser, G. Nanoengineered catalysts for high-temperature methane partial oxidation 2003 Catalysis Today
Vol. 81(2), pp. 287-296 
article DOI  
Schicks, J.M., Naumann, R. & Erzinger, J. Phase transitions in methane + ethane + propane gas hydrates: experimental observation versus modelled data. 2005 Proceedings of the Fifth International Conference on Gas Hydrates, pp. 1657-1662  inproceedings URL 
Schicks, J.M., Naumann, R., Erzinger, J., Hester, K.C., Koh, C.A. & Sloan, E.D. Phase transitions in mixed gas hydrates: Experimental observations versus calculated data 2006 Journal of Physical Chemistry B
Vol. 110(23), pp. 11468-11474 
article DOI  
Schultz, H. Zum Gashydratabbau mittels Mammut-Pumpen-Prinzip 2004 Fraunhofer IRB Verlag: pp. 173 book URL 
Schultz, H.J., Deerberg, G. & H., F. Neue Perspektive zum Abbau von Gashydraten. 2006 VGB Power Tech
Vol. 84(10), pp. 130-137 
article  
Schultz, H.J., Fahlenkamp, H. & Deerberg, G. Simulation des Abbaus ozeanischer Gashydrate 2004 Chemie Ingenieur Technik
Vol. 76(6), pp. 751-754 
article DOI  
Seo, Y.T. & Lee, H. Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures 2001 Journal of Physical Chemistry B
Vol. 105(41), pp. 10084-10090 
article DOI  
Sloan, E.D.J. & Koh, C. Clathrate hydrates of natural gases 2008 Marcel Dekker, Inc.: pp. 537-628  inbook URL 
Spangenberg, E. & Kulenkampff, J. Physical Properties of Gashydrate-Bearing Sediments 2005 Proceedings of the Fifth International Conference on Gas Hydrates, pp. 1657-1662  inproceedings URL 
Spangenberg, E., Kulenkampff, J., Naumann, R. & Erzinger, J. Pore space hydrate formation in a glass bead sample from methane dissolved in water 2005 Geophysical Research Letters
Vol. 32(24), pp. 4 
article DOI  
Tishchenko, P., Hensen, C., Wallmann, K. & Wong, C.S. Calculation of the stability and solubility of methane hydrate in seawater 2005 Chemical Geology
Vol. 219(1-4), pp. 37-52 
article DOI  
Wallmann, K., Aloisi, G., Haeckel, M., Obzhirov, A., Pavlova, G. & Tishchenko, P. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments 2006 Geochimica Et Cosmochimica Acta
Vol. 70(15), pp. 3905-3927 
article DOI  

(Kopie 1)